Energy-based Out of Distribution Detection for Graph Neural Networks

Presenter: Jiaqing Xie 2024.06.07

Traditional Graph Learning vs. Graph OOD Detection

V: Vertexes, E: Edges, A: Adjacency Matrix Graph G = (V, E, X), X: node features Graph Neural Network F(A, X)

Traditional Graph Learning Task: Node / Graph Classification, ... Graph OOD Detection Task: Binary Classification

A GNN Baseline (Example: GCN)

• Layer-wise Propagation

$$Z^{(l)} = \sigma \left(D^{-1/2} \tilde{A} D^{-1/2} Z^{(l-1)} W^{(l)} \right), \quad Z^{(l-1)} = [\mathbf{z}_i^{(l-1)}]_{i \in \mathcal{I}}, \quad Z^{(0)} = X$$
$$h_\theta(\mathbf{x}_i, \mathcal{G}_{\mathbf{x}_i}) = \mathbf{z}_i^{(L)} \quad (\mathsf{dim} = \mathsf{C})$$

• GNN Classifier (softmax)

$$p(y \mid \mathbf{x}, \mathcal{G}_{\mathbf{x}}) = \frac{e^{h_{\theta}(\mathbf{x}, \mathcal{G}_{\mathbf{x}})_{[y]}}}{\sum_{c=1}^{C} e^{h_{\theta}(\mathbf{x}, \mathcal{G}_{\mathbf{x}})_{[c]}}}.$$

Limitation of Softmax for OOD Detection

- In Image Domain, directly use the predictions of CNNs for OOD detection would lead to overconfidence of OOD data [Nguyen et al.].
- In Graph Domain, this overconfidence also exists for Graph OOD data [Wu et al.].
- Motivation : Use of Energy function, which is proved to be aligned with probability density of input data [Liu et al.].

Deep Neural Networks are easily fooled. Nguyen et al. CVPR 2015 Energy-based Out of Distribution Detection. Liu et al. NeurIPS 2020 Energy-based Out of Distribution Detection for Graph Neural Networks. Wu et al. ICLR 2023

Motivation 1: Use of Energy

Energy

$$E(\mathbf{x}, \mathcal{G}_{\mathbf{x}}, y; h_{\theta}) = -h_{\theta}(\mathbf{x}, \mathcal{G}_{\mathbf{x}})_{[y]}$$

• Free energy function

$$E(\mathbf{x}, \mathcal{G}_{\mathbf{x}}; h_{\theta}) = -\log \sum_{c=1}^{C} e^{h_{\theta}(\mathbf{x}, \mathcal{G}_{\mathbf{x}})_{[c]}}$$

• Loss Objective (Original Predictor)

$$\mathcal{L}_{sup} = \mathbb{E}_{(\mathbf{x}, \mathcal{G}_{\mathbf{x}}, y) \sim \mathcal{D}_{in}} \left(-\log p(y \mid \mathbf{x}, \mathcal{G}_{\mathbf{x}}) \right)$$

$$=\sum_{i\in\mathcal{I}_s}\left(-h_{\theta}(\mathbf{x}_i,\mathcal{G}_{\mathbf{x}_i})_{[y_i]} + \log\sum_{c=1}^C e^{h_{\theta}(\mathbf{x}_i,\mathcal{G}_{\mathbf{x}_i})_{[c]}}\right)$$

Original Predictor

$$p(y \mid \mathbf{x}, \mathcal{G}_{\mathbf{x}}) = \frac{e^{h_{\theta}(\mathbf{x}, \mathcal{G}_{\mathbf{x}})[y]}}{\sum_{c=1}^{C} e^{h_{\theta}(\mathbf{x}, \mathcal{G}_{\mathbf{x}})[c]}}$$
OOD Predictor

$$G(\mathbf{x}, \mathcal{G}_{\mathbf{x}}; h_{\theta}) = \begin{cases} 1, & \text{if } \tilde{E}(\mathbf{x}, \mathcal{G}_{\mathbf{x}}; h_{\theta}) \leq \tau, \\ 0, & \text{if } \tilde{E}(\mathbf{x}, \mathcal{G}_{\mathbf{x}}; h_{\theta}) > \tau, \end{cases}$$

Motivation 2: Label Propagation

• Not all graph data are labeled

$$\mathcal{L}_{sup} = \mathbb{E}_{(\mathbf{x}, \mathcal{G}_{\mathbf{x}}, y) \sim \mathcal{D}_{in}}(-\log p(y \mid \mathbf{x}, \mathcal{G}_{\mathbf{x}}))$$

• Graph data are inter-dependent, propagation with energy reinforces the confidence on detection

• Label Propagation, a non-parametric semi-supervised learning algorithm

Label Propagation

• Initialize Energy

Recall
$$E(\mathbf{x}, \mathcal{G}_{\mathbf{x}}; h_{\theta}) = -\log \sum_{c=1}^{C} e^{h_{\theta}(\mathbf{x}, \mathcal{G}_{\mathbf{x}})_{[c]}}$$

$$\mathbf{E}^{(0)} = [E(\mathbf{x}_i, \mathcal{G}_{\mathbf{x}_i}; h_\theta)]_{i \in \mathcal{I}}$$

• Belief Propagation

$$\mathbf{E}^{(k)} = \alpha \mathbf{E}^{(k-1)} + (1-\alpha)D^{-1}A\mathbf{E}^{(k-1)}, \quad \mathbf{E}^{(k)} = [E_i^{(k)}]_{i \in \mathcal{I}}$$

OOD Detector

$$\tilde{E}(\mathbf{x}_i, \mathcal{G}_{\mathbf{x}_i}; h_{\theta}) = E_i^{(K)}$$

$$G(\mathbf{x}, \mathcal{G}_{\mathbf{x}}; h_{\theta}) = \begin{cases} 1, & \text{if } \tilde{E}(\mathbf{x}, \mathcal{G}_{\mathbf{x}}; h_{\theta}) \leq \tau \\ 0, & \text{if } \tilde{E}(\mathbf{x}, \mathcal{G}_{\mathbf{x}}; h_{\theta}) > \tau \end{cases}$$

Motivation 3: Regularization

- Previous settings didn't include training Graph OOD data.
- Energy range: [t_in, t_out]

•

$$\mathcal{L}_{sup} = \mathbb{E}_{(\mathbf{x}, \mathcal{G}_{\mathbf{x}}, y) \sim \mathcal{D}_{in}} \left(-\log p(y \mid \mathbf{x}, \mathcal{G}_{\mathbf{x}}) \right)$$
Loss Objective $\mathcal{L}_{sup} + \lambda \mathcal{L}_{reg}$

$$= \sum_{i \in \mathcal{I}_s} \left(-h_{\theta}(\mathbf{x}_i, \mathcal{G}_{\mathbf{x}_i})_{[y_i]} + \log \sum_{c=1}^C e^{h_{\theta}(\mathbf{x}_i, \mathcal{G}_{\mathbf{x}_i})_{[c]}} \right)$$

$$\mathcal{L}_{reg} = \frac{1}{|\mathcal{I}_s|} \sum_{i \in \mathcal{I}_s} \left(\text{ReLU} \left(\tilde{E} \left(\mathbf{x}_i, \mathcal{G}_{\mathbf{x}_i}; h_{\theta} \right) - t_{in} \right) \right)^2 + \frac{1}{|\mathcal{I}_o|} \sum_{j \in \mathcal{I}_o} \left(\text{ReLU} \left(t_{out} - \tilde{E} \left(\mathbf{x}_j, \mathcal{G}_{\mathbf{x}_j}; h_{\theta} \right) \right) \right)^2$$

In distribution

Out-of distribution

Experiments

Baselines:

- MSP
- ODIN
- Mahalanobis
- OE (Outlier Exposure)
- Energy
- Energy without energy propagation
- GKDE
- GPN

Experiments

Graph OOD data creation follow two settings: multi-graph and single graph

- 1) Multi-graph
 - Choose subgraph DE as IID, other 5 subgraphs as OOD [Twitch]
- 2) Single graph
 - Change structures / features / labels [Cora, Amazon, Coauthor]
 - Partition nodes (Arxiv), before 2015 IID, after 2017 OOD

Results 1

• Metrics: AUROC, AUPR, FPR95

-

Model	OOD Expo	Twitch				Arxiv			
		AUROC	AUPR	FPR	ID ACC	AUROC	AUPR	FPR	ID ACC
MSP	No	33.59	49.14	97.45	68.72	63.91	75.85	90.59	53.78
ODIN	No	58.16	72.12	93.96	70.79	55.07	68.85	100.0	51.39
Mahalanobis	No	55.68	66.42	90.13	70.51	56.92	69.63	94.24	51.59
Energy	No	51.24	60.81	91.61	70.40	64.20	75.78	90.80	53.36
GKDE	No	46.48	62.11	95.62	67.44	58.32	72.62	93.84	50.76
GPN	No	51.73	66.36	95.51	68.09	-	-	-	-
GNNSAFE	No	66.82	70.97	76.24	70.40	71.06	80.44	87.01	53.39
OE	Yes	55.72	70.18	95.07	70.73	69.80	80.15	85.16	52.39
Energy FT	Yes	84.50	88.04	61.29	70.52	71.56	80.47	80.59	53.26
GNNSAFE++	Yes	95.36	97.12	33.57	70.18	74.77	83.21	77.43	53.50

Results 2

(a) The energy distributions on Twitch where nodes in different sub-graphs are OOD instances

Thanks

Motivation 3: Regularization

- Additional regularization doesn't effect NLL
- Proof:

 $\frac{e^{h_{\theta^{\dagger}}}(\mathbf{x}, \mathcal{G}_{\mathbf{x}})_{[y]}}{\sum_{c=1}^{C} e^{h_{\theta^{\dagger}}}(\mathbf{x}, \mathcal{G}_{\mathbf{x}})_{[c]}} = \operatorname{argmin}_{p(y|\mathbf{x}, \mathcal{G}_{\mathbf{x}})} \mathbb{E}_{(\mathbf{x}, \mathcal{G}_{\mathbf{x}}, y) \in \mathcal{D}_{in}}[-\log p(y|\mathbf{x}, \mathcal{G}_{x})]$

$$\begin{split} E(\mathbf{x}, \mathcal{G}_{\mathbf{x}}; h_{\theta^*}) &= E(\mathbf{x}, \mathcal{G}_{\mathbf{x}}; h_{\theta^*}) - E(\mathbf{x}, \mathcal{G}_{\mathbf{x}}; h_{\theta^\dagger}) - \log \sum_{c=1}^{C} e^{h_{\theta^\dagger}(\mathbf{x}, \mathcal{G}_{\mathbf{x}})} \\ &= -\log \left(e^{-E(\mathbf{x}, \mathcal{G}_{\mathbf{x}}; h_{\theta^*}) + E(\mathbf{x}, \mathcal{G}_{\mathbf{x}}; h_{\theta^\dagger})} \cdot \sum_{c=1}^{C} e^{h_{\theta^\dagger}(\mathbf{x}, \mathcal{G}_{\mathbf{x}})} \right) \\ &= -\log \sum_{c=1}^{C} e^{h_{\theta^\dagger}(\mathbf{x}, \mathcal{G}_{\mathbf{x}}) - E(\mathbf{x}, \mathcal{G}_{\mathbf{x}}; h_{\theta^*}) + E(\mathbf{x}, \mathcal{G}_{\mathbf{x}}; h_{\theta^\dagger})} \cdot \\ p(y|\mathbf{x}, \mathcal{G}_{\mathbf{x}}) &= \frac{e^{h_{\theta^\dagger}(\mathbf{x}, \mathcal{G}_{\mathbf{x}})[y] - E(\mathbf{x}, \mathcal{G}_{\mathbf{x}}; h_{\theta^*}) + E(\mathbf{x}, \mathcal{G}_{\mathbf{x}}; h_{\theta^\dagger})}{\sum_{c=1}^{C} e^{h_{\theta^\dagger}(\mathbf{x}, \mathcal{G}_{\mathbf{x}})[c] - E(\mathbf{x}, \mathcal{G}_{\mathbf{x}}; h_{\theta^*}) + E(\mathbf{x}, \mathcal{G}_{\mathbf{x}}; h_{\theta^\dagger})} \\ &= \frac{e^{h_{\theta^\dagger}(\mathbf{x}, \mathcal{G}_{\mathbf{x}})[y]}}{\sum_{c=1}^{C} e^{h_{\theta^\dagger}(\mathbf{x}, \mathcal{G}_{\mathbf{x}})[c]}}. \end{split}$$